PLA/CNF/C30B nanocomposites for food packaging applications

J. Trifol(*), P. Szabo, A. E. Daugaard

(*) jontrifol@gmail.com Danish Polymer Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 227, Kgs. Lyngby, 2800DK, Denmark

1. INTRODUCTION

2. ENHANCED PROPERTIES OF PLA COMPOSITE

100 _ח

2A. THERMOSTABILITY Grenoble INP pagora ≥ 1F8-- PLA PLA/CNF 5% - PLA/CNF 5%/C30B 1% PLA/CNF 5%/C30B 5% emperature (°C

Films after solvent casting (Dimethyl formamide at 80 ° C). PLA (left), PLA/CNF 5% (centre) and PLA/CNF/C30B 1% 1% (right). The hybrid nanocomposites have great stability.

2C. CRYSTALIZATION

120 °C - PLA

Enhanced thermomechanical resistance!

2B. TRANSPARENCY

ully crystallized composites (2h@120°C)

PLA 120 °C PLA/C30B 1% 120 °C

PLA/CNF 1% 120 °C PLA/CNF 1%/C30B 1% 120 °C

The combination of CNF and C30B in a polymer matrix doesn't significantly reduce the transparency of the films. Actually, they might show even improved optical properties due to its UV-blocking behaviour. The crystallinity heavily affects transparency and clarity.

2D. BARRIER PROPERTIES

UV-blocking behavior. Maintained

90% Decrea. OTR

76% Decrea. WVTR

transparency.

The PLA/CNF/C30B shows increased crystallization kinetic, furthermore it also shows a better spherulite distribution (not showed here). Both CNF and C30B appeared to have a similar effect of RAF development.

Neat PLA
PLA/gCNF/C30B 3% 5%

Understood the implications of the presence of nanoparticles and crystallinity upon water sorption and diffusion as well as their interaction with the crystallinity.

Added value!

3. PLA COMPOSITES AS ACTIVE PACKAGING

3A. MECHANICAL PROPERTIES

The addition of carvacrol successfully plasticises the PLA/gCNF/ C30B composites.

The T_g of neat PLA was ranging between 57°C and 62°C regardless crystalline morphology or addition of nanofiller, but the addition of 6% carvacrol decreased the Tg to 30 °C.

Grenoble INP pagora

3B. CONTROLLED RELEASE

 \cdot The crystallinity is key in the release process, more than the presence of nanoparticles.

• The surface modification of the nanocellulose didn't had a large influence on the release kinetic of the material.

· The composites prepared by solvent casting (SC) showed small spherulites (in the nano scale) while after the isothermal crystallization procedure (ISO) led to big spherulites (micro-scale). This influences dramatically the release profile of the material.

4. CONCLUSIONS

• The PLA/CNF/C30B composite shows good nucleating agent, thermomechanical and barrier properties, and the addition of carvacrol successfully plasticises the material therefore it is a promising substitute for Petrol-based packaging materials.

· The crystalline morphology (spherulite size and amorphous rigid/mobile region) plays a very significant role on transparency and mass transport properties through the PLA matrix.

ACKNOWLEDGES

The main author is thankful to the Marie Curie ITN program (Project: NewGenPak) for the financial support and to the COST Actions FP1003, FP1105, FP1205 and FP1405.

REFERENCES

- (1) Trifol J, Sillard C, Plackett D, Szabo P, Bras J, Daugaard AE. Chemically extracted nanocellulose from sisal fibres by a simple and industrially relevant process. Cellulose. Springer Netherlands; 2017;24 (1):107–18.
- (2) Trifol J, Plackett D, Sillard C, Hassager O, Daugaard AE, Bras J, et al. A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocomposites. J Appl Polym Sci. 2016;133(14):1–11.
- (3) Trifol J, Plackett D, Sillard C, Szabo P, Bras J, Daugaard AE. Hybrid poly(lactic acid)/nanocellulose/ nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistance. Polym Int. 2016;65(8):988–95.